We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Thermionic Emission?

By Jason C. Chavis
Updated May 17, 2024
Our promise to you
AboutMechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At AboutMechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Thermionic emission, also known as thermal electron emission, is the process by which charge carriers, such as electrons or ions, move over a surface or some sort of energy barrier by the induction of heat. Charge carriers naturally restrain activity; however, in thermionic emission, thermal energy is introduced to the carriers, causing them to overcome these forces. The reason behind the charge carriers' ability to perform this action is because electrons and ions are mobile and unbound to the normal chains of atomic structure that affect other particles. Traditionally, these charge carriers were referred to as “thermions.”

One property of the thermionic emission theory is that the emitting region is sustained with a charge opposite to the original but equal in magnitude. This means that the location of the charge carrier prior to emission will generate a positive charge in the case of electrons. However, this can be altered using a battery. The emission is neutralized when the carriers are farther away from the region, resulting in no change to the original state.

Historically, the primary example of thermionic emission is that used in the Edison effect. Electrons are emitted from a hot metal cathode, which uses a polarized electrical device to cause electrical current to flow out into a vacuum tube. This allows a device to maintain control over the movement of the electrons and amplify or modify the electrical signal.

Anything used for either cooling or generating power utilizes the concept of thermionic emission theory. As temperature increases, the magnitude of the flow increases. Besides the traditional use of vacuum tubes for electronics, solid-state devices can also be used to create the thermionic movement of electrons, allowing modern technology to function.

Thermionics was first reported by Frederick Guthrie in 1863. He was able to identify an alteration in the positive charge of a highly heated iron sphere that did not occur if the object was negatively charged. However, it wasn't until 1880 that the science was readily harnessed by Thomas Edison. When working with his incandescent light bulbs, he noticed that certain areas remained darkened. This allowed him to identify the flow of electrons due to heat, resulting in the creation of the diode.

Richardson's law describes the reason electrons are able to flow in this manner. Specifically, metals contain two electrons in the atomic structure that are able to move from atom to atom. In 1928, Sir Owen Willans Richardson, a British physicist, found that some electrons were able to leave the atom without returning. This process requires a certain amount of energy depending on the metal. The term for this effect is work function.

AboutMechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.