We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Electromagnetic Protection?

By James Doehring
Updated May 17, 2024
Our promise to you
AboutMechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At AboutMechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Electromagnetic protection is the attempt to prevent electromagnetic interference in an electronic device. Electromagnetic waves, which have both an electric and magnetic component, can cause some devices to malfunction in a variety of ways. Metal walls can often be used to block the electrostatic waves from an electric field. Magnetic waves, on the other hand, cannot be blocked and must be diverted around an object. Certain materials can redirect magnetic field lines around a device for this aspect of electromagnetic protection.

The first part of electromagnetic protection is electrostatic protection. Protection against external electric fields can be achieved with a metal box, often known as a Faraday cage. A Faraday cage, named after the English physicist Michael Faraday, is a solid or mesh enclosure made of a conducting material. When an external electric field reaches the walls of a Faraday cage, electrons that act as charge carriers will redistribute themselves to compensate for the field. If the walls of the cage are grounded, or connected to an external conducting path, electric currents in the walls will dissipate.

A Faraday cage can also block electric fields originating inside it. In fact, a typical microwave is an example of such an application. The structure of a microwave is made of a conducting material, while the door is usually a metal mesh screen. Since the holes in the screen are smaller than the wavelength of microwaves—generally defined as between one millimeter and one meter—the microwaves do not escape the enclosure. For this reason, removing the metal screen from a microwave door is not recommended.

Though a Faraday cage can provide much electromagnetic protection, it cannot block static magnetic fields—the other component of an electromagnetic wave. While electrostatic waves are generated from stationary charges, magnetic fields are produced by moving charges. An electric current is a collection of moving charges, so magnetic waves are often caused by nearby electric currents. Both constant and slowly-varying magnetic fields can be a problem for some electronic devices.

One solution for electromagnetic protection is to use a shield that reroutes magnetic field lines. Unlike electric field lines, magnetic field lines must always return to their point of origin. Therefore, magnetic shielding does not attempt to stop magnetic field lines; rather, it attempts to divert them around an object. Materials that can be easily magnetized make good magnetic shields. Mu-metal—an alloy consisting primarily of nickel—is a very effective, but expensive, material.

AboutMechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

By anon352722 — On Oct 24, 2013

My recent concern with the coming of Ison, which is reported to be highly charged and could pose an electromagnetic threat to we human conductors, leads me to ask is there any way to avoid the huge discharge as it passes?

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.