We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is a Temperature Actuator?

By Paul Reed
Updated May 17, 2024
Our promise to you
AboutMechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At AboutMechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A temperature actuator is any device that turns equipment on and off in response to temperature changes. They may use a variety of methods to measure temperature changes, including metals, chemicals or gases. Devices to control temperature can vary from a simple home thermostat for controlling heaters or air conditioners, to complex systems that control chemical reactions in industrial plants.

Heating and air conditioning equipment is connected to a thermostat inside the building. Until the late 20th century, thermostats used a mercury switch to control the system. This temperature actuator used a bi-metallic strip, which was a coiled strip of two metals fused along their length. As the temperature changes the two metals expand or contract at slightly different rates, and the coil changes shape.

Mercury was installed in a glass tube placed on one end of the bi-metallic coil. The liquid mercury moved back and forth inside the tube as the temperature changed and activated electric circuits to control heating or cooling. Only the bi-metallic strip was affected by temperature; the mercury remained unchanged. Use of mercury, however, was disappearing by the late 20th century due to its toxicity.

Chemicals can be used to control a temperature actuator, either by changing size, phase or vapor pressure, and some chemicals expand and contract with temperature changes. When sealed in tubes with a piston at one end, changes in temperature can cause the piston to move and activate a switch. A phase change refers to a chemical changing from solid to liquid, or liquid to gas. Vehicle thermostats used for engine temperature control use a wax seal that becomes a liquid as the engine warms, opening a valve that permits engine coolant to circulate. This will turn back into a solid when the engine cools.

Vapor pressure can be used for temperature control in two ways. One type of temperature actuator measures the pressure of vapor from a solvent sealed in a tube and connected to a chemical process tank or pipe. As the temperature increases, the solvent vapor pressure also increases and can activate a switch.

A second type of vapor actuator is a metal hydride controller. Metal hydrides contain hydrogen molecules that become hydrogen gas as temperatures increase. The increasing hydrogen gas pressure can push against a piston and be used as a temperature actuator. Fire sprinkler systems can use these devices to open and close sprinkler heads for water control. Once the fire is put out, the hydrogen gas returns to the metal, the gas pressure drops and the sprinkler head closes.

Electronic temperature controls began replacing mechanical devices in the late 20th century. Devices called thermistors, which are temperature-sensitive controllers with no moving parts, can be made that provide narrow temperature range control. Thermistors can be connected to control circuits that turn heating or cooling systems on and off, and are used in many digital thermostats.

AboutMechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.