We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is a Potentiometric Sensor?

By Ray Hawk
Updated May 17, 2024
Our promise to you
AboutMechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At AboutMechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A potentiometric sensor is a type of chemical sensor used in a wide array of industrial processes to determine the volumetric presence of a compound based on the detection of ionic atoms or molecules in the compound that carry an electrical charge. The sensor doesn't require a flow of current, but merely that the compound itself, whether liquid or gas, passes between the electrodes of the sensor device. One of the most common potentiometric sensor units manufactured as of 2011 is the oxygen sensor incorporated into automobiles, but there are many other uses for the technology.

The basic function of a potentiometer that is at the heart of a potentiometric sensor is that a known voltage on a reference electrode is used as a comparison to a voltage that changes on a working electrode. The voltage difference occurs when a solid electrolyte compound between the two electrodes obtains an electrical charge as a liquid or gas in the form of an ionic conductor passes by it. The level of charge is used to determine the quantity of ions present, and this value can then be compared against expected mass values and activate controls to maintain a desired equilibrium state.

Oxygen sensors, also known as lambda probes, have been included in automobiles manufactured in the United States since 1980 as a routinely-used potentiometric sensor, and are present to ensure that the vehicles meet pollution control standards in certain states like California, and to optimize the performance of engines for fuel efficiency. They work by measuring the amount of ionized oxygen that is present in the exhaust stream for an automobile while the engine is running. Microprocessors in the vehicle then take this value and compare it to optimal values for exhaust gasses. Where there is a variation in the output, the computer control can adjust the vehicle's air/fuel mixture and ignition timing to ensure that there is more complete combustion of fuel and reduced pollution. All types of vehicles, whether powered by diesel fuel, gasoline, ethanol, or combinations of such fuels, make use of these sensors, and more modern versions of the devices measure a range of different exhaust gasses aside from just oxygen.

Other uses for a potentiometric sensor include trace gas analysis in analytical chemistry down to parts per trillion and to determine the polar quantity of solvents such as water, alcohol, and other chemicals used in the creation of precise industrial solution formulas. Research as of 2011 has also led to the use of the potentiometric sensor in pharmaceutical analysis. They are used to detect lead and surfactants in waste water streams from treatment plants, and for many other reasons in the agricultural and medical fields, as well as for environmental pollution controls in a range of industries. Ion membrane potentiometric sensor designs used to detect heavy metals, such as lead or in determining the pH level of soil samples, can yield results in 15 seconds or less and be repeatedly used for up to four months without degrading.

AboutMechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.