We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

How is Pitot Tube Flow Measured?

By Ray Hawk
Updated May 17, 2024
Our promise to you
AboutMechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At AboutMechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Pitot tube flow is measured based on air pressure passing into it and the established air density of the atmosphere at its particular elevation and air temperature. These equations are based on Bernoulli principles at moderate speeds that must be below the supersonic range. Other factors such as ice build-up or cross winds can also affect the accuracy of Pitot tube flow. Though Pitot tubes can theoretically be used to measure any fluid flow velocity, they are most often incorporated today on aircraft to determine air speed in flight. Henri Pitot is credited with the invention of the Pitot tube in 1732 during studying of the pressure of the flow of the river Seine in France, and the French scientist Henry Darcy modified its design for aircraft use in the mid 19th century.

As a form of pressure measurement, Pitot tubes do not measure average velocity, but, instead, a single point of velocity in the stream. Fluid flow velocity cannot be measured by Pitot tube flow alone on aircraft, as they also require a measurement of outside static air pressure for velocity calculations. These devices, therefore, calculate what is known as stagnation pressure, or the pressure exerted by air as it enters the Pitot tube and exits through pressure transducer connected holes at the other end. Static pressure is calculated by static ports generally mounted on the side of the fuselage of an aircraft, while Pitot tube flow is based on a Pitot tube that is often mounted on a boom that extends out from the nose of the aircraft.

With Pitot tube flow, stagnation pressure is calculated by adding the standard atmospheric static pressure to the dynamic pressure exerted on the interior of the Pitot tube. At the back of the Pitot tube are a ring of holes and a central exit hole, both connected to the pressure transducer. As air exits these holes, the differences in pressure are used by the transducer to calculated dynamic air pressure. Bernoulli's equation states that static air pressure plus dynamic air pressure equals the total air pressure, which, in this case, is the Pitot's tube's stagnation pressure.

When stagnation pressure is known as well as the local air density, Bernoulli equations can be used to calculate the velocity of the aircraft that the Pitot tube flow is passing through. While this is reliable under ideal conditions, low air speeds will often present such small changes in pressure in Pitot tube flow that the pressure transducer can often fail to accurately calculate them, resulting in erroneous velocity readings. Several fatal air accidents involving faulty Pitot tube flow readings have also occurred when they were iced over, altering the air flow, so built-in de-icing heaters are now incorporated into Pitot tubes to prevent such tragedies in the future. Adjustments can also be made for unique conditions, such as low air speed or supersonic flight, so that Pitot tubes generate accurate readings.

AboutMechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.