We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Capillary Viscometer?

By G. Robinson
Updated May 17, 2024
Our promise to you
AboutMechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At AboutMechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A capillary viscometer is an instrument used to measure the viscosity, or thickness, of a liquid by measuring how long it takes the liquid to flow through a small-diameter tube, or capillary. The flow, or efflux, time is directly proportional to the liquid's kinematic viscosity, and may be converted directly to viscosity by use of a conversion factor unique to each instrument. Viscosity is generally temperature dependent, so the capillary viscometer is usually used in a controlled-temperature water bath set to a specific temperature.

Viscosity may be thought of as the internal friction of a liquid, or its tendency to resist flowing. Viscosity is thus an important property of fluids. It is of critical concern in lubricants, paints, beverages, and in any case where a liquid must be transferred, stirred, or manipulated.

A capillary viscometer may take any of several designs, but most common is the U-shaped or Ostwald viscometer, of which the Cannon-Fenske and Ubbelohde types are typical. A Cannon-Fenske capillary viscometer is a U-shaped piece of glass tubing bearing two glass bulbs or chambers on one arm, separated by a calibrated length of capillary tubing. Another bulb is low on the other arm, to which the sample is charged. The sample and the capillary viscometer are then suspended in a fixed-temperature water bath and allowed to come to thermal equilibrium.

Once thermal equilibrium is reached, the sample is drawn up into the upper chamber, and the test begins. The test sample is allowed to flow from the upper chamber to the lower through the capillary, and the efflux time, or time it takes to traverse the length of the capillary, is measured. Capillary viscometers come with a manufacturer-supplied conversion factor which allows calculation of the kinematic viscosity directly from the efflux time.

For high-viscosity liquids, solutions of these substances in suitable solvent may be used and measurements of the viscosities of the solutions at various concentrations determined. Construction of a graph plotting per cent concentration versus viscosity allows the viscosity of the pure liquid to be found by extrapolating the graph to zero solvent concentration.

In the Standard International (SI) system, viscosity is measured in units of Pa*s, or Pascal seconds. This is rather high for most liquids, though, and it is more common to measure viscosities in units of the mPa*s, or milli-Pascal*second, which is one thousandth of a Pascal*second. In the cgs sysytem, still used by the American Society of Testing and Materials, the unit of viscosity is the poise, or more usually, the centipoise (cP), which is a hundredth of a poise. Both the SI system and the cgs system are based on the metric system, so conversion between them is simple, and 1 cP is equal to 1 mPa*s.

AboutMechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.